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FOREWCRD

The Ballistic Research Laboratories served as host to the Second
Conference of Arsenal Mathematicians, This one-day meeting was held
2/, February 1956, Colonel A. R, del Campo, Director of the Laboratories,
extended a welcome to those in attendance, and then commented on the
contributions which mathematicians are making in various specific areas.
He also mentioned a few of the training programs currently active at the
Aberdeen Proving Ground. Following the talk by Colonel del Campo,
Sessions A and B of contributed papers were started and these continued
until noon. Session A was chairmanned by Professor H. H. Goldstine of the
Institute for Advanced Study, while Associate Technical Director of the
Ballistic Research Laboratories, R. H., Kent, served in a similar capacity
for Session B. Following lunch more contributed.papers were presented at
Sessions C and D, Dr. George Glockler, Chief Scientist of the Office of
Ordnance Research, and Mr. R. R. Kuebler, of the Office of the Chief of
Ordnance, served as Chairmen of these two phases of the program which
continued until mid-afternoon. At 1500 the group of some seventy-five
scientists in attendance at the conference came together to hear an invited
address by Dr., C. B, Tompkins of the University of California., His address
was entitled Linear Programming and High Speed Computer Applications.
Colonel P. N. Gillon, Commanding Officer of the Office of Ordnance Research,

was the Chairman of this final portion of ﬁze conference,
CRIMNA N !N <. arec
¢

presented  \gutgighpispenssnnal . Boundary

stic equations, stability and heat con-

[ L,
s Fourteen scientific papers

layer problems, stress analysis,

duction problems, computer and automatic weapon analysis were some of the many

topics in applied mathematics that were
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While it was gratifying to the coomittee on arrangements to have an over
supply of program material, it was unfortunate that time did not permit
presentation of all the submitted papers. A two-day conference would have

been organised had it been possible to foresee the amount and the quality
of the available talent.

Initial Distribution
The initial distribution list of the Transactions of the Sécond

Conference of Arsenal Mathematicians includes those who attended the meeting
and/or the govermment installations with which they are associated. For

economy, only a limited number of copies have b'een sent to each. Additional
copies will be transmitted upon request.
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A NUMERICAL SOLUTION OF BOUNDARY VALUE PROBLEMS FOR
NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS

By
Erwin Fehlberg
Redstone Arsenal, Huntsville, Alabama

Introduction, This paper presents a numerical approach to the iteration
method as applied to boundary value problems for ordinary differential equ-
ations.

Instead of using a numerical integration procedure for the iteration
method, expansions in series are applied. In this way the solution is
obtained in an analytical form and can easily be computed for any value of
the argument. In article 1 the method will be explained in detail for the
second- order differential equation. In article 2 the results for the
third- and fourth~ order differential equation are summarized.

This paper is not concerned with the investigation of criteria for the
convergence of the iteration method, but it is always assumed that the con-
sidered boundary value problem has a solution and that the iteration
procedure converges to this solution.

1. Second- order differential equation, We assume the differential
equation has the form:

y' = t(x,y,7'), (1.1)

and we are interested in an integral of this equation that solves the follow-
ing boundary value problem:

x==1: y=y(-1),
(1.2)
x=+1: y=y(+),

A linear substitution on x will transform any finite interval
a<xgb into -1 < x< +1. Therefore, our choice of the x-values in
(1.2) does not mean any restriction.

According to the iteration procedure we have to introduce into the
right~hand side of (1.1) an approximate solution of (1.1) which satisfies
(1.2). By this introduction the right-hand side of (1.1) reduces to a
function of x alone:

LY o= £(x). (1.3)

Integrating twice we get the next approximation for our sclution, the
constants of integration being determined by the boundary values (1.2).

To perform in a convenient way this integration procedure of successive
?pprgximation, we make use of expansions in Legendre series. Let us put in
1.3):

y' = £(x) = § PP (x), (1.4)
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the Legendre coefficients Fn being given in well-known manner by:

+1
P = 22513;..:{- £(x) P_(x)dx. (1.5)

For the required solution y(x) of (1.4) we similarly put:

y(x) = z Yn-Pn(x) (1.6)

with unknown coefficients. However, these unknown coefficients Yn can easily
be expressed by the well-known coefficients F of the right-hand = side of

(1.4).
Denoting the integral JT(x)dx by (1) f(x) and the integral
S (1)f(X)dx by (z)f(x), from (1.4) follows:

y = P, (1.7)
The coefficients In in (1.6) are then given by:

+1
-5 @De(x) p_(x)ex. (1.8)

Integration by parts reduces (1.8) in the following manner:

T, - 5= [(z)f(x)‘(l)l’ (x)] 4 ;o 2 Ve (x)ax
-1

¢/ !
X - %ﬂ [(z)f(x) (I)Pn(x)l' - %ﬂ‘ [(l)f(x) (Z)Pn(x)]:* el

a1 ' (1.9)
{ 10 s ®r (dax.

We assume nZ 2 and compute Yo and Yl later by means of the boundary values,

Then the first two terms on the right-hand side of (1.9) are zero, This
follows for the first term from the well-known relation:

(201). e (x) @ P (x) - P (x) (1.10)

(for L§gendrels polynomials, For the second term this follows by integrating
1.10):

(2ne1) (Pp (x) = (L)p

1
n+1( x) - ( )P

n-l(X) ( )
1.11
(2n*1) (2)P (x) - Eﬁ:—s [n+2(X) - Pn(xﬂ- 2n31.

En‘x) - n-2(x)] ‘
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The equation (1.9) then reduces to:

+1
Y - &‘zl!l S f(x) (2)Pn(x)dx (n>2) (1.12)
-1

or, using (1.11):

.1 ¢ 01 ¢
Y =553 -{ £(x) P o (x)dx - 33 onoT) -{ £(x)P_(x)dx +

1.1 F e (i (n22)
2n-1'2 4 Y Tn2 n=

F 2F F
- n=2 n n+2 >
Yn (2n-3)(2n-1) ~ (2n-1)(2n+3) * (Z2n+3)(2n+5) (n22) (1.13)

By (1.13) the coefficients T (nZ2) of our approximate solution y(x)
can immediately be computed as soon as the Legendre coefficients Fn of
(1.4) are known. However, the determination of the Fn is a relatively easy
problem and comparable e.g. to the determination of the coefficients of a
Fourier series. As to the technique of the determination of the Fn' the

reader may be referred to two former papers of the author*).

We still have to determine Yo and Yl . From (1.,2) follows:

Y°+Y1*Yz*...*rn’...-Y(*l)

(1.14)
Y-+, .*(-1)"In+. . .= y(=1),

Introducing the abbreviations:
3 [r6n + 1] = 70

3 P - xa) -5
we obtain from (1.14) by addition or subtraction:

(1.15)

Y +Y +Y, + ...+ +...=7301)
°© 2 4 2n (1.16)

Yl+Y3+YS+...0Y2m1+...-7(1).

¥ Zeitschr. f. angew. Math. Mech. 24, (1944), p. 71/76
n " " " 31 (1951), p. 104/114.
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From the first equation (1.16) and from (1.13) follows:

Y o=31) - Y= F1) T2r-2 ar .
o T VW ~E Toy = v 5k D T ED GRS

szwz
(Ly*3) (Lv+5)
or:
Y =y(1)-1F +1 F, (1.17)
o 3 (<] 15 2

From the second equation (1.16) and from (1.13) follows in quite the same

manner:
¢

=y(1) -1 F + L F. (1.18)
15 35

By the coefficients (1.17), (1.18), and (1.13) our approximate solution of
(1.1) and (1.2) is completely determined,

1

We then have to substitute this approximate solution and its first
derivative into the right-hand side of (1.1) and have to repeat the procedure.
Fo; the actual substituting it is useful to express the Legendre coefficients
T~ of the first derivative y '(x) also by the F.

In quite the same way as in the case of the Y, we find:

F F
' n-l _ntl >
and:
!o' - ¥2). (1.20)

2. Third- and fourth-order differential equations. We can here restrict

ourselves to a short summary of the results which can be obtained in quite the
same way as in article 1 for the second-order differential equation.

a. Third-order Differential Equation
Differential equation:
o= f(x,y,y',7") (2.1)
Boundary values:
x==1:ym=y(-1)
x==1:y =y (-1) (2.2)
x=+1: 5 =y(+l).
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Coefficients for the approximate solution:

F 3F 3F
Y = -7 - N + + -
n (2n-57?2n—3)(2n—ﬁ 2n-3)(2n-1)(2n+3 (2n§i)(2n+3§z2n+5)

Faea (n23)
2n+3)(2n+5)(2n+7

'y(l)-l§(1)+1y'(-1)-;r *LF v 4 Fp- LF
3 15 315 105

-y(l)-1F+2F-1F (2.3)

15 05 ° 315 4

1 315

__4_F2+%_F3-_;_F5

Y,=1y(1)-1y(1)+1F -2F
3 315 3 693

3 9 B

Coefficients for the first derivative of the approximate solution:

' - 2 %y p+2 (n2 2)
n “@n=3)(2n-1) - (2n-1)(2n+3) = (2n+3)(2n*5)
I =57 (2.4)
Y, =3 () -y(-1) +1F -1 F - 4 F,+1F
=3 (1) - y'(- - 1
1 3° 5! 1052 53

Coefficients for the second derivative of the approximate solution:

r"aimdl_Tml oy
n  2n-1" 2n+3 n=

(2.5)

Y " - 1) - y'(-1) + 1 F F +1
S =5 -y LR Lh

b. Fourth-order Differential tion:
Differential equation:
y'ro= £(x,y,yt, Yyt (2.6)
Boundary values:
x=-1:y=y(-1), 5 =K-1)

(2.7)
x=+1:y5=y(+1) , 7 = y'(+1).
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Coefficients for the approximate solution:
b2

N~

F
Y = n-A: -
n  (2n-7)(2n-5)(2n-3)(2n-1) _ (2n~5)(2n=3)(2n+1) (2n+3)

N 6Fn - +2
(2n=3)(2n-1)(2n+3)(2n+5) ~ (2n-1)( 2n+ﬁ( 2n+5)(2n+7)

F

n+
* TZn+3)(2n+ 55f2n'+75('2n+95 (n24)

Y, =FL-15y M) +LF -2 F+ LF
3 45 315 9L5

(2.8)

y1)+ L F-_2 F+ 1 _F

Y. =6y (1) - _2
13 525 1575 > 3485 °

i
5

Y,=1y (1)-2 F + 1 F - 4 F + 1 F
2 3 B ° 105 2 200 4 3005 ©

Y, =15(1) -15y()-_2 F +_137 F, ~ F.+_1 F
35 5 sl THm 3 wuEn ’ 30 7

If, similar to (1.16) the following abbreviations are introduced:
1[ren + p0)] -5
2 (2.9)

1 [y - 51} = 7 (1)

G ]

We obtain coefficients for the first derivative of the approximate
solution:

3F
n- n-l n+l
(2n-5512n-3512n—i) (2n-3)(2n-1)(2n+3) ZZn-l)Z2n+35(2n+55

F

__).(.22,.(__). (nZ3)
(2n+3)(2n+5)(2n+7

D (2.10)
I, =y ()
Y, =5 -1 F o+ 2 Fp- LF

-y - -
1 b3 105 * 315 &

! -
Y, =7(Q1)-5(Q) - 1 F + 2 F,+ 1 F
2 105 1 35 > %93 °
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Coefficients for the second derivative of the approximate solution:

F 2F F
L n=2 n+2 »
Yn (2n-3)(2n-1) ~ (2n-1552n+3) * (2n*3)(2n+5) (n2 2)
YO" = ;'(1) (2.11)

T =5 - 35

Coefficients for the third derivative of the approximate solution:

F F
e _n=1__n+l >
Yn 2n=-1 2n+3 (n21)
(2.12)
' e @)-31) +1L P -1 F
° BT 3% 3

Note: In this paper we have considered only the simplest boundary con-
ditions. However, our method can also be applied to more involved boundary
problems, For these boundary conditions, of course, affect the determination

of only the first Y coefficients Yo, Yl’ voe gr—l sy 1f ¥ is the order of the
differential equation.



THE MEASUREMENT OF NON-LINEAR FORCES AND
MOMENTS BY MEANS OF FREE FLIGHT TESTS

C. H. Murphy
Ballistic Research laboratories
Aberdeen Proving Oround, Maryland

An.:lmporte.nt technique of the exterior ballistician is the determination
of the aerodynamic forces and moments acting on a model by measurements of its
free flight motion. Since this technique has been traditionally handicapped
by a restriction to linear force systems, considerable importance has been
attached to the extension of the technique to non-linear force systems.
Although great success has been achieved in the application of the methods of
non-linear mechanics to the analysis of non-linear problems, this work is
usually restricted to one degree of freedom systems. In exterior ballistics,
however, we are faced with the problem of the angular motion of a misdle and

must contend with two degrees of freedom.

In this paper we will first discuss the problem of one degree of freedom
and then describe the extension to two degrees of freedom. A general class of

non-linear equations in one dependent variable may be written in the form:

x +ax = pf(x, ;:) and a>0. (1)

The general solution of the linearized equation (p = 0) is x = Acos(/a x + 3).
Potncaré’ has shown that , for "emall" values of u, periodic solutions of (1)

exist near solutions of the linearized solution. Poincarf!s work was modified



10 : ‘ contoronc‘ of Arsenal Mathematicians
by Gylden and Lindstedt to eliminate certain secular terms. Although the

Lindstedt process 1s an iterative one, the first step is often sufficiently
accurate. A rather simple method for performing this first step is embodied

in the Kryloff and Bogolinboff method of equivalent linearization.2

In this process Equation (1) is approximated by an equivalent linear

one of the form.

X +2k+aC x=0 (2)

kb o8 (ot + 8). The coefficients of Equation (2)

with the solution x = A e~

are determined by averaging uf(x, x) over a period of the motion. Kryloff

and Bogolinboff, replace the parent non-linear equation by a family of

equivalent linear equations. The coefficients of these linear equations

depend on the amplitude and, hence, are functions of initial conditions. In
particular, if we consider the motion of a unit mass attached to & cubic spring

with restoring force - ax + bxs,/ﬂ:?i, x) = bx° and the parameters of th? equiv-

alent linear equation are

k=0 (3)

o> = a + b(3/h A%) (%)

For this special case Equation (1) can be solved exactly in terms of an
elliptic integral of the first type. The exact frequency has been compared

with that predicted by Equation (4) and almost amazing agreement has been observed.
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In the case of a weak spring (b > 0) for which the cubic component can actually
reverse the direction of the spring force, Equation (%) was accurate to 1-1/2%
up to amplitudes which would make the cubic component half as big as the linear
' smponent. For the strong spring (b <0), Equation (4) retained this accuracy
of 1-1/2% for amplitudes of oscillation which make the cubic component 8ix
times biéger than the linear component. Thus we see that the method of equiv-

alent linearization is good for non-linearities which are definitely not "small".

Equation (4) can not only be used for the prediction of the motion of a
mass acted on by a cubic spring, but it can be used in the dynamic measurement
of this cubic force. We can disturb the spring and compute values of amplitude
and frequency from the resulting motion. If a series of different disturbances
are used, we can obtain/:mnber of different values of A and w. Using Equation
(%), o 18 plotted versus the effective squared amplitude, 3/4 A2 , and & line
fitted. The slope of this line is b, the coefficient of the cubic term, and

its intercept is a, the coefficient of the linear term.

The situation for the angular motion of a missile is quite similar. If
ve osr make use of a Cortesian coordinate gystem with l-axis along the trajectory,

the 2-axis in the horizontal plane, and the 3-axis determined by the right hand

rule, the direction cosines may be denoted ble - .).Hz - ).va, Ln, xv For
good missiles, the angle between the missile's axis and the trajectory,which
is called the yaw angle, is small and xH and ).v are then projections of this

angle on horizontal and vertical planes respectively.



12 Oontcrenﬁ of Arsensl Mathematicians
For simplicity we will consider an aerodynamic moment of the same form

as the cubic spring. The magnitude of this moment is, therefore, a cubiec

function of the angle between the missile's axis and the trajectory.

| Moment | = |KMO *Keo 8% | c (5)

vhere 52 = ).52 + ).va,
KM and l(Mba are dimensionless serodynamic coefficients, and
0
C is a dimensional constant.

In Reference 3 it is shown that the angular motion must satisfy the following
second order differential equation in the complex variable A = LH + uv

M
N - (B + Ky ) = 0 (6)

vhere A = axial moment of inertia
B = transverse moment of inértia, and

® o= axial spin.

The solution of the linearirzed form of Equation (6) is

i

k-l&e 1+K2e

P (7)

vhere f, = @, + éi t

. ™ 2 o
et ol e

K:l. are complex constants.
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Thus we see that the solution is generated by two complex vectors with
magnitudes Ki and rotating with frequencies ;61. In Reference 3 the equivalent
linearization process is applied to Equation (6) and it is found that the
solution has the same form as Equation (7). The frequencies bi'a are now
functions of the amplitudes K,'s. In perticular,Equation (4) has the follow-

ing generalization

Knmnge -7 .1 = Ky * 2 8, (8)
. K° - K’ ¢2
Kl x2 r= ,31 ¢2

According to Equation (8), from a number of different firings the measured
applitmles of oscillation and frequencies should be combined to yield pairs of
81 . 62 and 8 ea and these data points fitted by a line. In Figure I*this 1is
done for a body of revolution. In this case three center of mass positions
were tested and so three different values of K“o and KM62 were obtained. These
values showed excellent internal consistency when they were compared with the
usual center of mass transformations. Independent wind tunnel tests of this

model were made and good agreement with flight tests was obtained.

Next this technique wes applied to a large yaw program in which angles up
to 30°> had been obtained. In Figure P*these data are plotted and we see that
two lines are needed to fit the points! A little reflection showed that each

line corresponds to a cubic segment in the moment plane. An examination of

-

Apm——————

# See end of this paper
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the individual firings showed that all rounds possess yawing motions which made
use of one or the other segments but not both and this interpretation of the
data was, therefore, valid. In Figure 3 the actual moment plane is plotted.
(For large angles, 8 1s actually the sine of the yaw angle and not that angle
itself.) The physical explanation for the "corner" at 23° was found to lie
in the fact that the flow separates from the lee side of the model at about
23°. Comparison with direct wind tunnel measurement showed excellent agree-

Because of this success in treating a non-linear static moment, the
effect of non-linear Magnus and damping moments wes -c;.maidered. In Reference
3 it was found that these moments cause both modes of osciallation to damp
exponentially. The exponential coefficients are functions of amplitude and
plots similar to Figure 1 are possible. A number of measurements of non-linear
Magnus moments have been made and this extension to damped oscillations has

proven extremely valuable.
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AN ANALOG COMPUTER STUDY OF INTERIOR BALLISTIC EQUATIONS

By

William A, Dittrich
Frankford Arsenal

A study has been undertaken at Frankford Arsenal to simulate the interior
ballistic performance of a recoilless rifle by solving a set of simultaneous
differential equations describing the system on an analog computer. It was
desired to make use of the computer as a development tool to investigate the
effects on system performance of varying certain parameters. This provides
weapon system development with an intermediate step between theoretical cal-
culations and firing a test weapon, its simmlation on an analog computer,
making possible a large reduction in the number of test firings necessary to
develop a weapon.

The object of the study, then was:

First, to establish the validity and limitations of the equations proposed.

Second, if the validity of the equations proposed were established, to show
the use of the computer as a development tool by investigating the changes in
mzzle velocity, peak pressure, and the like produced by varying certain pro-
pellant and physical design parameters.

The initial weapon studied was a 57 mm recoilless rifle, chosen because
of the large amount of experimental data available for it. The equations of
motion for this weapon are a modified form of those derived by Hirschfelder and
others for a conventional weapon, familiar to many of us.

Equation of State:

PV=(1+B)12NFT V=V_ +AX+
v ¥

0
Where:

P = pressure (lb/inz)

V = volume (in’)

N e gas in weapon (1b)

F = impetus of propellant (£§i%§)

T = gas temperature (°K)
X = travel (in)
C = charge (1b)

T,= isochoric flame temperature (K)
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virial coefficient for gases

area of bore (in2)

total gas produced (1b)

v = > o
[}

density of propellant Lb
in3

PEOJECTILE VELOCITY EQUATION
V=AM [fPdt
where V = velocity
M = mass of projectile
PROJECTILE TRAVEL EQUATION

X=JV at

BURNING RATE EQUATION
N=2cr fpat
w

where /™ = burning rate constant (in )
sec

W = web (in)

nogzle discharge equation

N" = Cp Ay [TLdet
T

where:

CD = nogzle discharge coefficient

A, = throat area (inz)

T
N = gas flowing from noszle (1b)
ENERGY EQUATION:
N'C'T - chTo - CD Cp A_}_ ToT MV- (1 +2Qz M'! z
where:
Cv = constant volume spec. ht. of gases
Cp = constant pressure spec. ht. of gases

B = heat loss coefficient
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These, then, were the equations set upon the computer. I suppose a short
explanation of the analog computer operation would be in order here. The
analog computer found its first major use in the field of guided missiles

where the cost of test firing made necessary a means of performing all possible
research by theoretical means. Recently its use has been rapidly increasing

in other science and engineering fields. The analog computer uses such elec-
tronic components as amplifiers, resistor capacitor networks, and potiento-
meters set up in a circuit which obeys the same set of equations as the dynamie
system under study. Voltage fluctuates as pressures or displacements, for
example, in the physical section and the dynamic response of the simulated
system can be recorded. The analog computer has the advantage of simplicity
of setup and operation, and speed of solution, however its accuracy seldom
exceeds 1 percent. In interior ballistics problems this is normally adequate;
the accuracy of measurement equipment used in experiments seldom is more
accurate, A few of the basic circuits for various mathematical operations

are shown below:

Resistor Condenser Amplifier
—AWW— 1| ™
Integration Diffeq?ntiation

..__.4 }Ef_w

R l\ C RX
M, & %

. eo._._RQoLC—;
e.x - hg:‘féaclif oL

R;<<R (70 reduce amplifier noise sive .

nnltiplicationfpy constant Summation
R

L%,

€o* '%,5'— C E— AN

3 €L, , €, €L
C :=- —t ?T2—>
(R \ %L‘_ M

3

The circuit schematic for the equations given earlier to represent the
interior ballistics of a recoilless rifle is shown in figurel. (At the end
of this paper).
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A total of 18 amplifiers, six multipliers and some nonlinear function
generators were used. Six channels of information were recorded.

A typical computer run is shown in Figure 2,

It can be seen that peak pressure ls 6100 lb/'in2 and muzzle velocity is
1175 ft/sec. Since the initial charge is 1 1b. it can be seen in (N) and
that only 70 percent was burned and only 30 percent went to propelling the
projectile, These values agreed quite closely with experimental test results
as can be seen in fig, 3. Peak pressures of experimental test results were
within 5 percent of computer values, Muzzle velocities came within § ft/iec.
of each other as shown in figure 4.

Having shown the ecquations to be representative of the actual physical
system it was then decided to vary certain design parameters to discover the
effects on interior ballistic performance. Variations of such parameters as
web of propellant, burning rate constant, throat area, and nozzle discharge
coefficient was made and effects on weapon performance noted. Although time
does not permit a complete listing of results of varying such parameters, 1
can say that it was found that the web size, charge weight, burning rate
constant exerted the greatest effect on peak pressures and muzzle velocities
of weapon while virial coefficient, nozzle discharge coefficient and specific
heat ratio of gases has little effect on the ballistic cycle. The effect of
nozzle variations might greatly effect recoil, however, a point not investi-
gated in this study. An example of results obtained, the effect of a linear
burning rate equation on weapon pressure is shown in fig. 5.

Since the completion of this study other weapons have been analyzed by
this means and suggestions made for ways to improve their performance. Once
the analog computer is set up, it is possible to make a hundred or more
solutions for different parameter values within one day. The feasibility of
certain new weapon systems, such as rocket assisted guns, have also been
investigated by this method, resulting in quite a saving over experimental
studies. It is hoped in the future that the computer simulation will become
one of the standard steps in the creation of a new weapon system.
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™E RESPONSE OF A TAPERED CANTILEVER BEAM WHEN
A TRANSIENT FORCE IS APPLIED AT THE END
by
Ao 8¢ Elder
Ballistic Research Laborstories

INTRODUCTION

In recent years several authors have investigated the vibrations
of a beam attached to a mechanical system having lumped physical con-
stants. McBride*determined the normal modes and natural frequencies
of a uniform cantilever beam with a terminal dashpot. Y calculated
the response of a cantilever beam attached to springs and masses. We
wvill determine the response of & cantilever beam with linsar terminal
constraints when an arbitrary transient force is applied at the end.

We will restrict our investigation initially to beams having a power
lav variation of section properties, as beams of this description have
been considered by several authors, and their results form a convenient
point of departure for the present study.3%5

I. RESPONSE OF A TAPERED CARTILEVER BRAM WITH
A TERMINAL SPRING, MASS, AND DASHPOT
Consider the mechanical system shown in the diagram below:

F(t)

’
m L
”
4
-
< :
4
[} ; m = MASS

J ¢ = viscous damping constant
k = spring constant

The equation of motion is

. |
S 3 2, . éﬁro | ()
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The boundary conditions are

Y(s, t) = 0 (2)
Y, (s, t) =0 (3)
nnxx(o, t) =0 ()

‘n¥, (0, t) + c¥, (0, t) + K¥(0, ) = K(t) - [xnu(o., t}x (5)

F(t) =0, tS0 (6)
F(t) =F, t >0 (7
¥(x, 0) = 0 | | (8)
Y.(x, 0) = 0 (9)

The laplace transform, defined by the equation
o0
y(x, 8) = f e *ty(x, t)at,
o :
wvas used to remove the time variable from the above system of oquat:lon-.‘

[nyn(x, l)]n + saw(x, 8) =0 (10)
y(s, 8) =0 ' (1)
v (4, 8) =0 (12)
Ely, (0, 8) = 0 (13)

(1k)

oy

(m2 + cs + k)y(0, 8) + [llyn(o, .)]x -

Consider a cantilever beam in which the section properties vary
as & power of the distance from the tip.

EI(x) = E2(4) - (])° . (15)
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pA(x) = pa(s) « (PP (26)

The mass of the beanm is
2
m = [oA(x)ax = 54.?. (17)
o
The static deflection curve due to a terminal load F is

3 -
¥ (x) = m{@“ -(3-a)(} +(2- B& (18)

The static spring rate is given by

Yor beams of rectangular cross section, the section modulus is given:
by

2(x) = 2(s) + (3) Bl + ) | (20)

The stress at the outside fiber of the beam is
| .
olx) = 2'!&)' (3‘:_)1 % (a+8) | (21)
Thess equations show that the parameters o and p are subject to certain
restrictions:
> -1 Finite mass of beam.

ax +2 FMnite deflection.
a+p £2 PFinite bending stress.

The problen may be rendered dimensionless by the following series
of substitutions:

€ = qx
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A= gl '

q--oxaﬁ-&-} )
or 8 .- x-wﬁ#& ——E_I'("'LK

pA(2) - £

4= T T T T

WRJ -

3 - g)k

um

Equation (8) now becomes
[Vecee = P =0 , (22)

Let 6 =B -+ b
Then the series solutions of (22) are

8

yl(c) =1 +§r§ -1 +a‘_ 2)(m * eeces + (23)
‘G"'l
¥o(¢) LR (e 1 () R RN (T TR A (24)
S-atd
3..
yi(c) ¢ 5 +3:a)(5—+1‘ja)(m+ teces + (25)
2od

2«
yh(‘) = € a+w- l)M"’ B a,ml .“‘a) + ceoes + (26)

Ifa=1, Y2 andyu coincide, e.ndyh must be replaced by the loga.nthlic
solution .
&+1
1 2 1 C € ' ;
v, (€) = y,(€)log € + (g— + 3 + ) 4+ .o 4+ (27)




Conference of Arsenal Mathematicians 39

These solutions satisfy the following boundary conditions at the origin:

2 2
¥, (€) ?%-2-‘-)- < i‘-%é-'l = [e“ -d—%gl]
¥(€) 1 0 0 0
yo(€) 0 1 0 0
¥5(e) 0 0 0 (5-a)2-a) (28)
y,(¢) (Eq. 26) 0 0 (2-a)(1-a) 0
y,(¢) (Ba. 27) 0 0 1 0

The transform of Y(x, t) 1s of the form
y(x, 8) = c,(8)y,(€) + c (s)y,(e)
+ ex(s)ys(e) + o) (s)y,(¢)
On referring to (13)and (28), we see that

c u(.) = 0
The remaining coefficients are readily obtained by applying Cramer's

dz':.'l.os. Oon conbini;gn:he results according to the rules for adding

terminants, we
v, (¢) ¥,(¢) ¥5(€)
y,(») ¥p(M) y3(»)

I s . ¥,'(A) ¥,'(A) y5'(x) (29
SRR (- w1 ?""'%1") 0 (2 - a)(3 - a)xb.'“

y,(3) vo(2) ¥3(M)
¥y'(2) ¥,' (%) ¥3'(»)

The deflection Y(x, t) may be found by using the Bromwich inversion
integral. Let s = y + iw, v°>0; then
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Y(x, t) = lim ETJ e’ y(x, 8)ds

The integral is an analytic function of s. The only singularities
are poles which occur at s = 0 and at the roots of the frequency equa-
tion

~a(\) =0
where
(~m.5 +37A A +1) 0 (2 - a)(3 - a)l.}'a
&x) = ¥, (M) (M) ¥5(») (51)
v,'(0) ¥,'(2) ¥5'(2)

It will be shown subsequently that all the poles of y(x, s) in the s
plane lie on or to the left of the imaginary axis. let xl, ).2 xn

be the r;u of thiu equation in order of increasing modulus and
let s

2 2 EI(4
= = 32
% + mh) ., —5—(-1—‘ L) (32)
The residue at the origin is

lin sy(x, s)
s-»0

If the damping constant 7 is sufficiently small, the remaining poles
are simple and the residues may be found by differentiation. ILet

vi(e)  yle)  ysle)

p(s) = | v, (0) v, (0 v

') v'h) vy'(a)
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and let
q(s) = ea(r)
Then the residue at the pole 8 = s, in the upper half plens is
1'15 8 :nt
or
e  yle)  ys(e)
) ¥y
3 yl.()') }'2'(*-) y}'(x). V.t
Fo4 n
m . @5?‘] [co- mnt + 1 sin mnﬂ e
since
oA
E-35
Let
r(s, ).n) = ':‘

whenun=\vn+1¢nnx thentheresiducttln-vn-%inthelwer
half plane is

8
- n
r(e, ).n)e

The sun of these residues is real. let

Re(rn), In(rn) be the reel eand imaginary perte of r(e, xn). on

-t

combining the above results, we find
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/] X)L (3. )@ -
) Tz - o) - IR B") (3 -a)g) + (2 °;j

) T Ya*
- TR nzl Re(r )cos qy t - In(r,)sin ﬂ)nt]e (33)

If the damping constant y is zero, y and Im(rn) are both zero, and
the geries solution has the sirmpler form

re’ . Xy 3-8 X
te, ) ¢ e T [ ¢-ag) + (-l

nie)  yle)  ys(e)
yl()-) ye(k) 73()»)
O FALS I AV AV ] | BB R W

CEND oo \ §§§Ll'

The characteristic root A, may be found approximately by truncating

cos a;nt (34)

).sl.n

the ascending series for A(A) with the term in A0 ret

nO) w0 s
= *l- G Ta- NG -2 a-37 "
') oy

U3

(M) ¥s(n)

3 2).6 A
Y- Y. () ya'()) ‘(Q.Q)X'af.'mi-a-lﬂb*a.3)...}
2 3

a0 = (- + 12 2%+ X)u(0) + (2 - )3 - AT us00) (39

If the tip of the beam is free, the frequency equation reduces
to

us(r,) = 0 (36)
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or

5, 2
)‘1"’&(6+a-1)(5+a-2)(§+a.3) . (37)

If on the other hand the tip is hinged, we have
ul()'i) = 0 ‘38)

or

5. 2
MEE T Ta- DB - a v (39)

Let

27 6 - 3
MEETEE T I va- DB -a+ ) NEra- D s a5 +as3)

- T+35-a
Then, approximately,
).5 + i “k’ a

"- Y+ lﬂ (40)

On referring to Eq. (32), we see that

BI(s) 2
L~ - .5“1 - ,M(l) 12 beyu > 7 (41)
J J um

pA(S)

M

2
if by >y (42)

Critical damping occirs when

2
h‘l’lplo\- Y4
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Tue first characteristic root 8, is then repeated giving rise to a
double pole in the transform y(x, s). Terms of the form t cos Wt

and t sin w t will then occur in Eq. (33). If kv u.< 72, Eq. (40) will
have two refl, unequal roots, and the system w:llllb% overdamped in the
first mode.*

Orthogonal function theory may be used to show that | <O when the
damping constant ¢ is > 0. let y(x, ln) be a normal funct@on satisfying

Eqs. (10-13) and the homogeneous boundary conditiou
(xms2 + ca + k)y(0, 8) + E.‘.Iyn(O, lﬂx = 0 (u3)

Then the complex conjugate of y(x, sn) vill satisfy Bqgs. (11-13), the
,differential equation

EEﬁn(x, ln)]n + i'epﬁ(x, 'n) =0, (L4)

and the boundary condition
(a° + ¥ + XIF(0, #,) + [EF (0, 8}, -0 (45)

Ve may show that

2
(.7 - 3,2 [ oarlx, 2)5(x, 8 )ex
[»]

a%(0, s.) (o, 'n)]

d e 4
=70, ) gf [;1— " |- 50, ) f o 2

t]:n the case of a uniform cantilever beam with a terminal dashpot, McBride
has shown that critical damping and over-damping cannot occur in modes
higher than the first. This fact is probably true of cantilever beams
of non-uniform cross-section with a terminal mass, spring, and dashpot.
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Noqan-wn+mn,i'n=vn-mn, so that

an-ln-21mn

2 =2
s, -8, -hiwnmn

On using the boundary conditions (13 and (45), we find after same reduction

ey(0, 'n)§(o: ﬂn). (46)

Yo = - 1

2 [0, 80500, 8,) + [orrtx, 8)5(x, o,)ax]
o

Now a complex number times its conjugate is real and positive; therefore

tn< 0 if ¢ >0

Vnuo if ¢ =0 (u47)

This result would be expected on physical grounds.,
By means of a similar analysis we find that

(1 1) f. = a) a%(x, 8)
(—z - =7 fEI -2 & (48)
s, s, J)g ax _ ax

+ (0, 8,)5(0, 8,) = {—1- - L]0, 50, 5)
n

6n comparing the coefficients of c in Eqs. (l&6).and. (48), we f£ind

. | 4.2 0, da- ,
W(O, ‘n)_y_(o’ .n) +fEI y( d .n) ’(02 'n)
2 2 0 - dx dx
Vo vt = (49)

s
my(0, 8,)¥(0, ) + f PAY(0, 8,)¥(0, s )ax
- 0
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hen
2 dY(op n
ky(o,sn)+fm —
(Dne = ° 7 (50)

27(0, 5;) + J ohy?(0, 8 )ax

Equation (50) is the usual energy equation for the circular frequency;
(49) is the corresponding equation for the modulus or the complex circular
frequency @, + 1\1' .

DYNAMIC EFFICIENCY OF BEAMS

The present astudy is the outgrowth of a design problem which ?.role
in the Ballistic Research laboratories at Aberdeen I'roving Ground,
spring device was required to respond accurately to large forces of
rapidly varying megnitude. In order to apply approximate engineering
enalysis to the test results, it wvas necessary for the spring device

to respond essentially with a single degree of freedam. Due to the high
forces and relatively low spring rates encountered, the spring element
wvas fairly heavy, and it was suspected that the distributed mass might
cause appreciable response in the higher modes.

The beam-type spring device built at the Ballistic Research Labora-
tories is represented schematjcally in the figure below:

Fiv)
Y
m /
Mg L,
2
p—- X —-ﬁ' L’
Y ”

E—_

Ve will consider only the response to a step function of force applied
to the moss, m, as the response to other terminal forces may be found
by using Duhamel's integral.
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Equations (1-9) of Part I apply provided we set k = 0, ¢ = 0 n
Eq. (5). We may £ind the nomal elsstic curves by setting Y (x, t) =

¥, (x)308 at;

2
er. 4y, 2
- =0

recd Galre d RENZA ()
| a% (o)
= EI—%;— - oy, (0) = 0 (52)

a% (o)

n

El —r 0 (53)
y,(8) =0 (54)
ay (s) :
_.:l‘.x_.. =0 (55)

It is convenient to use the influence functiom and its bilinear expan-
sion in terms of normal elastic curves to solve this problem. The
response coeffiocients are expressed in terms of energy integrals and
other parameters of the system. The effects of a change in system
parameters upon the response of the first mode may then be determined.

The influence function G{x, ¢) is the equilibrium displacement
of a point x caused by & unit load at ¢. It satisfies the differential
egquations

Ed [EI f—g -l 0Se€x<h
dx

. 4

Ed EI:x'g‘ = 0 OS:(CS[

The influence function and static deflestion curve yo(x) satisfy the
boundary conditions (52-%5).

" Under fairly general conditions, the influence function will possess
the absolutely and uniformly convergeat bilinear expansion
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oe Yalx)y,(e)

6(x, ¢) = X )
ol + fou%e]
o

n=1
It is evident that yo(x) = FG(x, 0). The final expression for the dynamic
deflection is

(56)

L 0 ) .
Y(x, t) =y (x) - nil ol )y"](x cos o t (57)
N AR A
o

The response coefficients for cantilever beams may be defined as follows:

[ -}
Y(0, t) = y,(0) [1 - X A, cos mnt] (58)
Y,,(0, t) = i-' £ 8 cosqt | (59)
" po |
Y (x, 1) = mi[l - ::1 C,(x) cos mnta | (60)

[]

A comparisom of aquations (57) and (59) shows that

2
5 - my,(0) : (62)

n s
w, (0) + [ oy, fex
o

This coefficient has an obvious intepretation in terms of kinetic
energy. In cases of interest B, differs far more from unity than
either A, or Cl' and forms & GO t basis of comparison in measuring
how far & beun-mass system departs from single degree-of-freedom action.
In order to find B, exactly, the complete solution of the Bermoulli-

Buler equation is required. Reasonable bounds, howvever, may be derived
from the influenze function, which is the solution of a much simpler
equation.
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The notion of reduced mass is Irequently used to acocount for the
effects of the distributed mess upon the fundamental frequency and
kinetic energy of & beem-mass system, It is defined as

j oy, “ex
[}

R

We see that

1 n+n
' r

B

We may shov that

2

3 Z
(0, 0) + [oA(mxlex w,2(0) + [ fex
o o

] y |
1 Y 2
G(o, 0) !W(X, x)ax » m, > ;;?-(-6; fwo (x)ax (63)

(o)

The above relations were derived for a cantilever beam. Never-
theless, they hold for more gemeral conditions of constraint, provided
the asswsptions which underlie this development are still valid, Xo
energy must pass between the beam-mass system and the supporting
structure and this structure must restrein the beam sgainst rigid body
mtion, In the tadble below, a comparison is made detween the exact and
spproximate values of B} for certain wpifora beams,



50 : Oonference of Arsenal Mathematicimns

n
VALUES OF B,AlD =~ FOR CERTAIN UNIFORM BEAMS

m,
3.2
) z
Central Mass Central Mass
Cantilever Ends Higged BEnds Built In
B, Exact .863 TS5k .800*
B, Upper Bound .864 «755 .802
B, Lower Bound 857 738 .766
By
q Upper Bound 1/k 8/15 16/35
mr '
I; Lower Bound 33/140 17/35 13/35

In the above equations, m corresponds to a terminal mass fixed
by the conditions of the test. The kinetic energy of the beam must be
reduced in order to improve the dynamic response of the bean-mass
system. This is done by increasing the stressing efficiency and at
the same time minimizing the reduced mass of the beam. However, the
strength end energy requirements of the beam-mass system must be main-
tained, and the beam should be readily fabricated. The last condition
sets a practical limit to the improvement in response which may be
obtained by redesigning the beanm.

Let

= maximum load

= meximum stress

stress at given point

Young's modulus

spring rate

density (mass per unit voluie)
V = volume of beam '

© X W a 0w
]

¥These flgures are derived from data given by H. P. Oay, Reference (8).
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The static effiziency, &, is defined as

1 fa
8 = ~=x o av
Vs

By equating the interncl strain energy to the work done on the bean,
we may show the minimum mass of the beam is

1,2
m, =3 @ &
All the factors but a are determined by the characteristics of the beam
materiel and the required characteristics of the special spring device.
Consider again & cantilever beam in which the section properties

vary as a power of the distance from the tip (15-21). The static
efficiency is

-3 375

The mass of the beam is
y ]

) ]

m, = [orex - 4]
0

The reduced mass ratio is

m

D = =

and the net efficiency ratio is

plo

mt1=§,5=a-a+h; then, on referring to Bq. (63) we £ind that

- 1
. 2 ’ 2
e dorra > 2> [P G- (2 - o)) s
0

When a is fixed, the extremes of this inequality are decreasing fun:tions
of 8. We should take 5 as large as vogsible gubject to the condition



52 Conference of Arssnal Mathematicians

a+rpS 2. Let 5 =2 - @; tuen for cantilever beams of unifor: static
bending strength we have

1
. - 2 .
(E-a%@-a)>§>f'2.a[e-a' (3 - a)r +(2-a.)) ac
4 :

We sce thatgmaybemadeas anall as we please by taking o large and
negative. However, the only values of o which are practical for engineer-
ing purposes lie in the interval

1Sas¥ lé

In the table below, the mass ratio Eﬁ is taken to be g .

vnmormmwmmssnmomalm
CANTILEVER BEAMS OF UNIFORM STRENGTH

B, 3.2
v(a) 1w 2
o Lower Bound Upper Bound Upper Bound Lower Bound
1.0 0667 .0833 .985 .982
1.1 0706 .0884 .984 .981
1.2 OT49 .0940 984 .980
1.3 .0796 «1001 .983 .978
1.4 ,0848 .1068 .982 976
1.5 0905 J1h3 .980 975

The combined effects of increased stressing efficiency and more
favorable nmass distribution decreases the net efficiency ratio -2 fron -Jé
for a uniform cantilever beam (@ = B = 0) to 1/36 for a linearly tapered

cantilever bean (¢ = p = 1) baving the same strength and energy
choracteristics.
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THE RESPONSE OF UNIFOGRM AND LINEARLY TAPERED CANTILEVER BEAMS

Cantilever beams of uniforu cross section were used in the first

special spring device constructed at the Ballistic Research lavoratories.
A diegraun is shown below.

F(v
¥
m

SANMAL\RV

b x
2
% My

The response to a step function of force may be obtained by setting
a=0,Bp=0,2=0, k=0 1inRBq. (1-9). The series (23-25) are then

expressed in terms of hyperbolic and cirsular functions. The character-
. istic equation is

TAMN

AR B

A3} )

-;E).(cosh).ainx- cos )\ sinh )) + (1 + cos A cosh 1) = 0O
The circuler freguencies are given by

2
@ =My \lﬁ

vhere ) 18 the n® positive root of the frequency equation. The motion

at the free end is

3
(s, t) -%g— [1. - ;lAa cos a;nia
=
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wvhere

12 [ coth A - cot xn)]

A =

B L
M [ mb Ay * ('m; + 1)(coth M, - cot ).n)]

The acceleration of the mass m is given by

X F o
Ytt == § Bn cos (Dnt

vhere

coth ). - cot >.

=
.oFI§

2 E; + (1 + E;)(coth A, - cot xn)

The strain et the built-in end is given by the series

Yxx“’ t) = [l - Vn(l) cos o, t]

Calculations were carried out for the mass ratio = = %, as this was

considered the most unfavorable ratio that would odcur in practics.
The results are tabulated below:

RESPONSE COEFFICIENTS FOR A UNIFORM CANTILEVER BEAM

m_ 3

%, "2
n My ay/ey A, By Co
1 1.14644338 1.0000 «999461111 .863269 +1.022259
2 3.99951130 12.171 00051740 .066194 - 026047
3 7.1152135 38.497 00001859 .023801 + 0049776
L 10.241683 79.806 000002159 .011874 - .001694

9 13.376078 136.13 .000000442 .007074 + .000767
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We sec that only the ecceleration coefficient Bl differs markedly

from unity. The approxinete analysis of Part II indicates that a
linecrly tcpered cantilever bean should respond more faithfully to a
trensient forze applied at the end. Accordingly, tiue second spring
device wos constructed of linearly tepered beams of conatant stat:l\.
bending strength, o8 shown in the diegram below:

F(t)
_m
’
r
L,
~
my /
4

Y
==

AR RARR NN

The response to a step function of force may be found by setting ¢ = O,
k =0 in Eqs. (1-9) and @ = 1, B = 1 in the equations of Part I. The
deflcction may be expressed in texrns of the functions

8

*3—;8“*

D
€ 6 &
'T+T_-B'§T+"'

+

cx

1
yy=1l+gx

&

Yo =€+

Vs = Ee +5'6T ——%m—+

which are solutions of the differential equation
Veeee * Veee = B 0
These series were first given by A. Ono in his study of turbine blades.

The frequency egquation is

a(r) =0
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m .2

qh 0 -]

A(l) = yl(x) Y2(x) y5(>.).

70 v v

th

The circular frequency of the n° mode 1is

A2 o
%-";'2158‘}

vhere "n is the n"’h

defleation is

, XY(x, t) 'd{-n (s - !)2

¥;(¢) vo(e)  ys(e)

positive root of the frequenay equation. The

) M) 0y

'ﬁf;y 'Z" 7'00)  ¥'(y)  ¥st(ay)
3 k)
TR

cos %t

mu-pho—ntatthofrnmhunnw

Y(0, t) = ﬂ:n- (1 - A cos q t)
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where
00 vs(h)
8
¥2' () ys'(ny)
)

x'n )Y
The corresponding acceleration is given by

Ytt(o, t) = %ZBn cos ay t

vhere
o(h)  ¥s(0)
N 2xnm
5 Xn m ya'(xu) 15'(1-‘)
e o w,
" T
The strain at the free end is given by
0 ¥ =gy |2 - El a, o8 mnt]
=
vhere ' |
. ¥, () ¥o(n,)
'0g) v Xn)
%a = &)

Sy
On referring the charssteristic equntion, ve see that
: Bn -c,

for all values of n. A similar formula is true for all beams of uniform
static bending strength.
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The functions yl ’ ya, and yj, together with their first three

derivatives, were calculated Ly the Computing Laboratory of the
Bailistiz: Research laboratories. The characteristic roots and Fourier’
coefficients were then found by desk pul:zulation. The values of these

constants for a mass ratio E’E = é are given below.

RESPONSE COEBFFICIERTS FOR A LINEARLY TAPERED EEAM

n_3
w2
%

n Ay 261' A, By =9,
1 1.26397436 1 99969708 9563696
2 4,10791986 10.563 00029522 .0315259
3 7.13977 31.908 00000680 0066287
I 10.25647 65.8L4 .00000054 .0022484
5 13.3853 112,144 00000008 0010133
Sum 9999997 9977859

This table shows how a more favorable mass distribution reduces the
kinetic energy of the beam. The estimated value of B, estimated by

Rayliegh's method is .957L4, an error of only 1/10 of 1$.
The renpénso coefficients were also calculated for a mass ratio
of ﬁf = § . This constant strength charscteristics as a uniform

cantilever beam having a mass ratioofis-%-
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RESPONSE COEFFICIENTS FOR A LINEARLY TAPERED BEAM

1
%t
%4
A s Y A
1 9674117k 1 93996478
2 4.08611 17.840 +00003439
3 7.13179 54,347 00600076
4 10.25263 12.32 00000006
5 13.38315 138.34 00000001
Sum 1.00000000

98523

01078
.00222
00075
«00034

99934

We see that the acceleration response of the tapered cantilever
beam closely approximates the response of a massless spring for the

mass ratio used here. The figure B, = 863 obtained for the cantilever

59

beam of uniform aross section should be compared with the value Bl - ,985
shown in the table above. There is a corresponding improvement in

the Al coeffiaient.

Normal deflection curves for uniform beams subject to various end
It vas
convenient to graph the normal deflection curves for the tapered beam

in dimensionless form. The length of the beam equals the characteristic

constraints have been published by Den Hartog and others.

root; the deflection scale is arbitrary. The base of the beam is

built in; the tip was either hinged or free. These correspond to the

limiting values of the ratio == —p O and —= — o9 . The deflection

D 5

equation is:

y,(¢) ¥o(¢€) ¥5(¢)

y(e) =8, » *  Iny)  yy)  Ts0)

Yl'('xn) 72'(*:1) | y}'()-n)
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=8, n [sl,nyl(c) + 8y Yole) + 85,nv3(¢)]

The characteristisc roots, the scaling constant so,n’ and the constants

8 are tabulated below.
i,

DEFIECTION CONSTANTS POR A TAPERED CANTILEVER BEAM

85,!1 =0
2 M Som S1n fon
1 2.6752 1.0000 2.83354% 1.50406
2 5.5718 .2000 -20.84760 +12.57850
3 8.6883 .0200 +297 . k2400 -178.12100
b 11.8152 0010 -4931.18000 +295k 16000
5 14.949k .0001 +90799 . 60000 =54395 . 30000

From this table, it is found that ).12 = 7.1567, vhich may be compared

with the value 7.16 given by Ono. The remaining roots apparently
have not been given previously, even in the extensive tabulation of
characteristic roots published dy D. Wrinch.

Similar caloulations vere made for & tapered beam hinged at the

tip.
DEFLECTION CONSTANTS FOR A TAPERED BEAM
TIP HINGED - BASE BUILT IR
Bl,n =0

i_ xn soln s2,11' 83,11

1l 4.0750 1.000 +3.92382 -2.90119
2 7012’8 .100 -1&6.@510 4-55.1“0‘00
3 10.2507 010 +715.68200 -545.85500
b 13.3820 .005 -12452, 30000 +9498.11000

These deflection curves dare shown in Fig. 1 and 2.
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ANALYSIS OF AN INFINITE PLATE CONTAINING RADIAL CRACXS
ORIGINATING AT THE BOUNDARY OF AN INTERNAL CIRCULAR HCLE

by
O. L. Bowie
Watertown Arsenal

I. INTRODUCTION

Considerablé advance has been made in recent years in the

spplication of energy type theories in determining the influence
of cracks in the specimen geometry on the strength of the specimen.
f. order to apply theories such as that developed by A. A, Oriffith

(1)5:: it is necessary to calculate the elastic strain energy of
the system. Although only the boundary streszes and displacements
are actually necessary for this caloulation, one must nevertheless
formally solve the problem as a whole to obtain this information.

This paper is concerned with the solution of a particular class
of plane protlems in elasticity arising from a distribution of
radial cracks of finite length originating at the boundary surface
of a circular hole in an infinite plate under the two load systems
shown in Figure 1. The geometry of the internal voundary, T, can
be conveniently déscrived by eogsider:lng the plate as the complex
g - plane vhere z = x + iy = re*”, Then, if the center of the hole
ss chosen as 2z = 0, we specify that the radial cracks lie along
Q= o, 2“, e o o (K-l) where le is an mug‘ro For ‘_72’
we further restrict our attention to cracks of equal lemgth.

Two load systems will be considered in detail. The first of
these (1llustrated in Figure la) is the case of uniform tension
at infinity vith Tfree from applied load. In addition to ite
plane stress apyrlications, this case enables us to study the plane
strain problem corresponding to internal pressure acting in hollow
cylinders of very large wall thickness with longitudinal cracks
originating at the inside surface. Indeed, this latter problem
can be studied by superimposing the solution corresponding to unie
form hydrostatic pressure. The second load system will be taken
as tension (in one direction) at infinity as 1llustrated in Figure
1b, again with T considered as free from applied 16ad, This latter
case arises in the plane stress problem of radial cracks at the
boundary of a circular hole in a very large thin plate under tension.

The problems described above can be most conveniently handied
_ by the complex variable method of Mushelisvili [(2)] for solving
plans problems of elasticity.

¥ Numbers in brackete refer to the relerences at the end of the
papere
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II. STRESS ANALYSIS.

A. Pormulation of the Problem

The complex variable method of Mushelisvili depends upon the
representation of Airy's stress function, U (x, y), in te of
two analytic functions of the complex variable, 2, namely, @ (1)
and Y/ (z), where

U (x 9 = R[04 fEiU () 2] (1)

With this representation the stress components in rectangular oo-
ordinates can be written as

o7+ 0xa 2[B(s) 4 Ps)] a4 e[ Ps)] (2)
Cy-0x+28Txy a2 k@ (z) ¥ (2] (3)

where the prime notation demotes differentiation with respect to s
and the bars dencte the complex conjugates. The condition that a
boundary 7~ be load-free can be expressed as

P(z) + 28 (x)+ P(x)=0 , st (4)

It is convenient for the purpose of enforcing the boundary
condition (4) to imtroduce an auxiliary owlox plane, the[
- plans, such that the unit cirole, ¢~= ¢*¥ , and its exterior in
the{ -plams are mapped into T and its exterior, respectively,
by the analytic funotion

’lW(g) (5)

The stress functions £ (z) and ¢ (3) can be considered as funotions
of the parameter § ; in faot, to simplify the notation we shall
desigmte

D) b5 5 PG (6
W) sbwE) =¥v¢)

Thus, ¢'(z) H ¢'(‘ )/w’(f ), etc. and the boundary condition (4) can
be written as

PCT) + w (o) ¢’(a-)/w'(q-) +ple) =0 (7)

. The analysis of the problem requires the determination of the
functions @ (¢ ) and (;) which are amalytic for '&,71 , and
satisfy the loading oconditions at infinity and on the unit circle,
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‘ B, The Mapping Funotion '

The mapping function (5§) for this problem can be expressed
in differential form as

de/s « (1 -0-XWE /€ (1 4 263K 4 § -2k (8)

where € is a real constant such that 0« [€/<1 and ‘he denominator
is considered poeitive at ( = 1 in order to define the proper branch.
By varying € , the crack depth can be adjusted to assigned values.
The integer X determines the number of radial oracks. It is evident
from the structure of Equation (8) that the exterior of the unit
cirole in the [ -plane is mapped conformally into the exterior of
the corresponding boundary in the g - plane. Finslly, from symmetry
it is clear that the unit circle is mepped into a clircular boundary
interrupted by K symmetrically distributed radial oracks of equal
depth.

The mapping function defined in differential form by (8) oan,
in general, be found in closed form by quadrature. For K sz 1, it
can be shown that

sz wW(B)=Ce[I-r e+ UL I EERT) (9)

The form of the mapping function, however, inereases in complexity
with larger integers, K.

For the purpose of the subsequent stress anmalysis, it is
desirable to find a series representation of W(Qx converging on
and exterior to the unit circle. The form of such a series is
ovidently

raw(l) s 843 a5 ®] (10)
nsl

where o and the A 's are real coefficients. The coefficients A,
can be oomnient?y computed from the following recursive formulae,

determined by expanding both sides of (8) in series and equating
coefficients of equal powers of [’

"‘ Al' 8 1

-2k A, = B, + 48, (1)

KAy = Hg 408, 404
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where LA =,
4;44-‘6; =X
28486, —«,
(12)
"'ﬁ# lﬁﬁ-rﬁ =x, :
and

o(K s =2(1 - co8X) sinKx /sinX , cos K 3 - €

The unit circle in thet -plane is the circle of convergence
of the series (10) since aingulo.ritios ocour on the unit circle at
the roots of

£ s2rfi1.0 - (13)

It oan be shown'l) tnat lim A, = 0; thus, by & well-known
n o0 .
theorem (i3] the series (10) converges at all points on the circle
of convergence except at the singular points described above. This
property is useful in that it provides for a systematic scheme for -
obtaining polynomial approximations of the mapping function.

C. Method of 8olution

Were it not for the unknown character of the singularities of
(f) and ¥ (g) on the unit circle, the problem could be solved
y 8imply assuming a series development of the two functions with
the proper conditions at infinity, substituting into the condition
(7), and determining the numerical values of the coefficients from
the set of relations obtained by equating coefficients of equal
powers of 0. This approach would lead to immediate difficulties
as it will be shown'that W(r) must admit simple poles on the unit
oircle at those points corresponding to the notch roots. Further-
more, certain singularities appear to exist at the points on the
unit circle corresponding to the junction of the cracks and the
circle. The forms of these latter singularities appear too diffi-
cult to establish a priori. A completely rigorous solution of the
problem would require that a seriss expansion of 4 ( ) and ¢ (“b),
in which terms corresponding to simple poles at the craok roots
added to the series for / ([ ), be examined for convergence on the
" unit oircle. Although there is every reason to believe that this
procedure is possibly theoretically, severe practical difficulties

1. The proof is partiocularly simple for K.z 1. From (9), it csn be .
seen that the A,'s behave essentially as the Legendre polynomhll.
The proof is more diffioult for X > 2,
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immediately are encountered. Although the infinite system of
linear simultaneous equations which determine the coefficients
of the series is amenable to numerical solution, it is diffioult
to determine rigorously the properties of the coefficients
necessary to examine convergenoce.

The method of solution which will be used in this analysis
ciroumvents direot consideration of the second type of singularity
mentioned above by considering polynomial approximations of the
mapping function. An accurate desoription of the streess distribu-
tion at the crack roots is obtained by introducing cusps to desoribe
the crack roots and their neighborhoods. Convergence of the poly-
nomial approximation to the exact problem can then be oconsidered
a matter of choosing a sufficiently acourate polynomial approximm-
tion of the mapping function such that a closer approximation will
not affect appreciably the values for the information desired.

In the following amlysis, we shall denote polynomial approxi-
mations of the mapping function by

2= W(§)=CB' €57 | (14)

The existence of cusps at looations corresponding to the crack
roots is ensured by demanding

az/df = w/(8)=(1-; ™) g (&) (19)

where (C) is a polynomial with coefficients such that the roots
(§) a2 O fall inside the unit circle. Due to the convergence
or 10), suiteble approximations can be obtained by setti
’An modifications of the A 's being made to utilrynflﬁ)

D. The Case of "All-Around" Tension at Infinity

Por uniform tension at infinity, illultrated in ngn la,
the applied loading ocan be express